vcluster:

A Framework for Auto Scalable Virtual Cluster System in Heterogeneous Clouds

March 2, 2012

Supercomputing Center
KISTI

Seo-Young Noh
Contents

1. Introduction

2. Related Work

3. vcluster: Automatic Scalable Virtual Cluster System

4. Development Status

5. Roadmap

6. Conclusions
1. Introduction

- Why we started this project...
 - GSDC at KISTI has been recently setup and is growing fast.
 - There is a strong need to tight collaboration with labs having strong experiences on grid, data, and cluster systems.
 - This project has been started as a part of collaboration with Fermilab.

- Why cloud was chosen...
 - Among 7 possible collaboration items, FermiCloud related project was attractive to both parties.
 - Cloud computing is one of hottest topics in IT world and no exception in HEP because of its flexibility.
 - Developed while KISTI staff stayed at Fermilab for 3 months (from May to August 2011)
1. Introduction

- Grid vs. Cloud
 - Grid and Cloud are both types of HTC (High Throughput Computing).
 - So, they are both focusing on system utilization.
 - But, there is a big difference between them.
 - Grid focuses on orchestration of scattered physical computing resources while cloud focuses on utilization of idle physical computing cycles through virtualization.

- Benefits from cloud...
 - Flexible for computing resource allocation.
 - Able to create multiple virtual machines on a single physical machine.
 - Able to make homogeneous and heterogeneous machines in OS and system level.
 - Easy to deploy huge computing cycles in a very short time.
 - Fast disaster recovery for service.
 - ...

Seo-Young Noh
2. Related Work

- Very similar articles...
 2. I. Gable et. al, “A batch system for hep applications on a distributed iaas cloud” in proceedings of computing in High Energy Physics 2010 (Taiwan)

- Concept of cloud scheduler

vcluster is very similar, but there are differences.

Figures from [1]
3. vcluster: Automatic Scalable Virtual Cluster System

- Design Concept
 - Cloud System Agnostic
 - Batch System Agnostic
 - Simple Cluster System
 - Auto Scalable on Demand
 - Dynamic Load Balancing
 - Power Management by Auto Migration
 - Security Monitoring
3. vcluster: Automatic Scalable Virtual Cluster System

- **Controller**
 - **Host Manager**
 - Host system management
 - VM migration & power on/off host systems
 - **Cloud Manager**
 - Single view for underlying cloud systems
 - **VM Manager**
 - Launching and managing vms.
 - **Plug-In Manager**
 - Handling plug-ins for batch and cloud systems
 - **Batch System Manager**
 - Single view for underlying batch systems
 - **Policy Generator**
 - Policy generation for jobs, running or idle vms.
 - Policy is passed to Load Balancer

- **Load Balancer**
 - **Policy**
 - Containing information how to distribute loads
 - **Plan Generator**
 - Creating an action plan for the policy
 - **Plan Executor**
 - Executing the plan generated by the plan generator

- **Monitoring**
 - **Cloud System Status Checker**
 - Monitoring the heartbeat of cloud systems
 - **Cluster System Status Checker**
 - Monitoring the heartbeat of virtual cluster system
 - Queue status & Pool status
 - **Security Checker**
 - Monitoring any security holes
4. Development Status

Some components have been partially implemented.
4. Development Status

```plaintext
vcluster > debug on
starting virtual machine manager
```
4. Development Status

vcluster > oneml list rsyoung
[1m ID USER NAME STAT CPU MEM HOSTNAME TIME
1801 rsyoung clean-la runn 0 1024M fcl014 19 21:37:09
1825 rsyoung vm-wn runn 0 1024M fcl016 11 20:23:09

vcluster >
vcluster > cloudman set public 0
vcluster >
vcluster > dins
--
Inst ID Status
--
i-1801 running
i-1825 running

vcluster >
vcluster > condor_status
Name OpSys Arch State Activity LoadAv Mem
ActvtyTime
Fermicloud007.fnal LINUX X86_64 Unclaimed Idle 0.010 1001
Fermicloud043.fnal LINUX X86_64 Unclaimed Idle 0.000 1001
Total Owner Claimed Unclaimed Matched Preempting Backfill
X86_64/LINUX 2 0 0 2 0 0 0 0

vcluster >
vcluster > cloudman set public 1
vcluster >
vcluster > dins
--
Inst ID Status
--
i-b5ca1bdb stopped
i-3fed3d5a pending

vcluster >
vcluster > dins
Inst ID Status
--
i-b5ca1bdb stopped
i-3fed3d5a running

vcluster >
vcluster > condor_status
Name OpSys Arch State Activity LoadAv Mem
ActvtyTime
Fermicloud007.fnal LINUX X86_64 Unclaimed Idle 0.010 1001
Fermicloud043.fnal LINUX X86_64 Unclaimed Idle 0.000 1001
ip-10-110-54-223.e LINUX X86_64 Unclaimed Idle 0.320 590
Total Owner Claimed Unclaimed Matched Preempting Backfill
X86_64/LINUX 3 0 0 3 0 0 0 0

vcluster >

vcluster > start i-3fed3d5a
vcluster > [MSG] : starting vm in a separated thread
vcluster > [MSG] : start a vm of i-3fed3d5a using REST API.
vcluster > [MSG] : starting is done in a separated thread

vcluster >
vcluster > dins
--
Inst ID Status
--
i-b5ca1bdb stopped
i-3fed3d5a pending

vcluster >
vcluster > dins
--
Inst ID Status
--
i-b5ca1bdb stopped
i-3fed3d5a running

vcluster >

vcluster > condor_status
Name OpSys Arch State Activity LoadAv Mem
ActvtyTime
Fermicloud007.fnal LINUX X86_64 Unclaimed Idle 0.010 1001
Fermicloud043.fnal LINUX X86_64 Unclaimed Idle 0.000 1001
ip-10-110-54-223.e LINUX X86_64 Unclaimed Idle 0.320 590
Total Owner Claimed Unclaimed Matched Preempting Backfill
X86_64/LINUX 3 0 0 3 0 0 0 0

vcluster >
4. Development Status

- **Improvements**
 - Centralized database to keep virtual machine status
 - Smart policy to estimate proper virtual machines from queue status
 - Smart recovery system from database corruption

```
vcluster > dins
Inst ID ------------------------------- Status
---------------------------------------------------
i-b5ca1bdb stopped
i-3fed3d5a running
---------------------------------------------------
vcluster >
vcluster > stop i-3fed3d5a
vcluster > [MSG]: stopping vm in a separated thread
vcluster > [MSG]: stop a vm of i-3fed3d5a using REST API.
vcluster > [MSG]: done in a separated thread
vcluster > condor_status
Name OpSys Arch State Activity LoadAv Mem
ActvtyTime
Fermicloud007.fnal LINUX X86_64 Unclaimed Idle 0.010 1001
Fermicloud043.fnal LINUX X86_64 Unclaimed Idle 0.000 1001
Total Owner Claimed Unclaimed Matched Preempting Backfill
X86_64/LINUX 2 0 0 2 0 0 0
Total 2 0 0 2 0 0 0
vcluster >
```
5. Roadmap of Y. 2012

We will develop continuously vcluster’s basic functionalities and apply it to small-size real experiments

- Cluster Monitoring Functionalities
- Policy-based VM Management

- Enabling vcluster on FermiCloud + EC2 + Gcloud

- Basic functionalities for launching and terminating vms
 - Condor-based
 - FermiCloud + EC2

- Tablet-based vcluster

- SC2012 Demonstration
6. Conclusions

- With successful collaboration with Fermilab – GCC (Grid and Cloud Computing Department), conceptual idea for vcluster has been developed.

- Design concept of vcluster focuses on developing cloud and batch system agnostic, and very simple virtual cluster system.

- vcluster can make a virtual cluster system over heterogeneous cloud systems like FermiCloud and Amazon EC2.

- Final development target of vcluster this year is to complete the feature of automatic scale up and down with FermiCloud + Gcloud + Amazon EC2.

- Final result will be demonstrated in SC2012
Thank You